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Statistical Physics IV : Itô Calculus and Black Scholes
Blackboard derivation for Black-Scholes part
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1. Introduction : Options

A European Option is a contract giving its holder the right (but not the obligation) to buy ("Call option")
or sell ("put" option) an asset (the underlying) at a future time T at the predetermined delivery price
k (the "strike"). The seller of the option has the obligation to deliver the underlying to the buyer if he
decides to exercise the option.

Option are often used as an insurance (hedging) or speculative tool (e.g Airliners or currency hedge),
thus it is important to find a method to price them.

The asset we have the right to buy or sell is called the underlying and can be almost any financial
instrument :

• A Stock (Nestlé SWX:NESN)

• A currency pair (EUR/CHF)

• A metal (gold)

• A commodity (crude oil)

• (A bond (Swiss Nat. Bank Bills))

The payoff (gains) of a call option is mathematically defined as Φ(ST) ≡ (ST − k)+ = max(ST − k, 0)
as we consider that a rational investor would never exercise the option if it is not profitable for him.

Figure 1: Profit and Loss of a Long Call EU Option with strike k = 50 and initial price c0

The price to enter an option contract depends on the current price of the underlying S(t), the time
to maturity and the strike price k. It can be hard to compute as it require to predict the price of the
underlying in advance. This is exactly the goal of Black and Scholes’ model.
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2. Price of an European Option

Consider a stock S (or any other type of asset), of price S(t) such that

dS(t) = S(t)µdt + S(t)σdW(t) (1)

i.e it follows a Geometric Brownian Motion. In other word, the return on S (or relative evolution),
dS(t)
S(t) , follows a linear growth (the "drift") plus a certain volatility component (the "noise").

Geometric Brownian Motion : Solution of the SDE

Rewriting the dynamics (1) as
dSt

St
= µdt + σdWt

one recognize the differential of a log, hence let’s define Yt = log(St), which is also a stochastic process.
Ito’s lemma gives :

dYt =
∂Yt

∂S
dSt +

1
2

∂2Yt

∂S2 dSt

=
dSt

St
− 1

2
dS2

t
S2

t

Using the fact that dt2 = 0, dW2
t = dt and dtdWt ∼ dW3

t = 0, we have

dYt = µdt + σdWt −
1
2

σ2dt

= (µ− 1
2

σ2)dt + σStdWt

As µ and σ are constants1, one can integrate Yt between t0 = 0 and t :

Yt = (µ− 1
2

σ2)t + σWt (2)

such that
St = e(µ−

1
2 σ2)t+σWt (3)

This right to buy or sell indeed comes at a given price F, which depends on the current time t and
the current underlying price S(t) (not its history) hence F = F(S(t), t).

Applying Ito’s lemma yield

dF(S(t), t) =
∂F
∂t

dt +
∂F
∂S
(
µStdt + σStdWt

)︸ ︷︷ ︸
dSt

+
1
2

∂2F
∂S2 σ2S2

t dt︸ ︷︷ ︸
dS2

t

Collecting all the dt (the deterministic or riskless2 part) and dWt (stochastic or risky part) terms

dF(S(t), t) =
(

∂F
∂t

+ µS(t)
∂F
∂S

+
1
2

σ2S(t)2 ∂2F
∂S2

)
dt + σS(t)

∂F
∂S

dW(t) (4)

This is the dynamics of our option’s price.

1 That’s an assumption of the model
2 The deterministic part is said to be riskless as it can be integrated exactly : knowing the value of the process at t0 is enough to

know the value at any time after t0.
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3. Hedged (riskless) Portfolio

The dynamics of F includes a deterministic part plus a stochastic one which brings in risk. By combining
in a specific way the option and its underlying stock it is possible to remove this risky component.

One way is to buy one option and compensate its risk by selling ∆ shares of stock S :

V(S, t) = F(S, t)− ∆ · S(t). (5)

Which proportion of stock ∆ is needed to remove risk ? We want the portfolio to be insensible to a
variation of S(t) i.e

0 ≡ ∂V
∂S

=
∂F
∂S
− ∆ =⇒ ∆ =

∂F
∂S

(6)

One can check that the dynamics of V(S, t) is deterministic and hence riskless :

dV(s, t) = dF(s, t)− ∂F
∂s

dS(t) (7)

=

(
∂F
∂t

+ µs
∂F
∂s

+
1
2

σ2s2 ∂2F
∂s2

)
dt + σs

∂F
∂s

dW(t)−
(

µs
∂F
∂s

dt + σs
∂F
∂s

dW(t)
)

(8)

=

(
∂F
∂t

+
1
2

σ2s2 ∂2F
∂s2

)
dt (9)

which indeed has no stochastic component : the uncertainty on the option is exactly balanced by the
uncertainty on the stock. This technique, called "Delta Hedging" is slightly different than Black and
Scholes initial argument. See [1] for more details on this point.

4. Putting all together : Black Scholes PDE

As the portfolio is riskless, the no arbitrage principle requires that it has the same return than a risk free
bank account with return r i.e its dynamics should be given by

dV(s, t) = rV(s, t)dt (10)

Combining eqs (9) and (10) gives

dV(s, t) = rF(s, t)− rs
∂F
∂s

=

(
∂F
∂t

+
1
2

σ2s2 ∂2F
∂s2

)
dt

Rearranging the term yields the famous Black-Scholes PDE

∂F
∂t

+ rs
∂F
∂s

+
1
2

σ2s2 ∂2F
∂s2 − rF(s, t) = 0, (11)

F(T, s) = Φ(s) (12)

One remarkable fact is that the drift constant (or mean return) µ does not appear in eq (11). In fact
the price of the option is not absolute but relative to the underlying price.

Also if r = 0, (11) becomes a diffusion equation with D = 1
2 σ2S2 (true for the log)

5. Solving the equation (sketch)

One way to solve the PDE is to cast it into a backward Fokker-Planck equation for the transition
probability P(x, T|s, t) :

∂P(x, T|s, t)
∂t

+ rs
∂P(x, T|s, t)

∂s
+

1
2

σ2s2 ∂2P(x, T|s, t)
∂s2 = 0, (13)

P(x, T|s, T) = δ(x− s) (14)
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in which case the solution reads :

F(s, t) = e−r(T−t)
∫

dxP(x, T|s, t)F(x, T) (15)

where F(x, T) ≡ Φ(x) is the terminal value. For a call option (the option to buy),

Φ(x) = (x− k)+ = (x− k) ·Θ(x− k)

such that integral solution simplifies :

F(s, t) = e−r(T−t)
∫ ∞

k
dx(x− k)P(x, T|s, t). (16)

The last step is to find an expression for the transition probabilities. This is given by the Fokker-Planck
theory (see [2] ch. 4.3), which links the PDE (13) to the following SDE :

dx(t) = rx(t)dt + σx(t)dWt (17)

i.e. the SDE of a geometric brownian motion. x(t) is log-normally distributed hence we have that
log(x) follows a gaussian distribution. Knowing that one can derive an expression for the transition
probabilities P(x, T|s, t). Then the integral expression for F(s, t) can be evaluated in term of the
cumulative density function of the Gaussian

φ(x) ≡
∫ ∞

x
dx e−

1
2 x2

Eventually, in the case of a call option Φ(ST) = (ST − k)+ the solution of Black-Scholes’ PDE is

F(St, t) = St φ(d1)− ke−r(T−t) φ(d2) (18)

where

d1 =
log
(

St
k

)
+
(
r + 1

2 σ2)(T − t)

σ
√

T − t
d2 = d1 − σ

√
T − t

and
φ(x) = P(X ≤ x), X ∼ N (0, 1)

is the c.d.f of the normal law.
This is the famous Black-Scholes formula for the call option [3] . In the case of a put option (the

option to sell the underlying) :

F(St, t) = −St φ(−d1)− ke−r(T−t) φ(−d2) (19)
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